
Overview

EZX plugins are a powerful toolset to extend EZX functionality without modifying core application
code.

EZX plugins use the following basic technologies:

1. EZX Plugin API - creates plugin configuration, attaches plugin to EZX site, provides PortalDI
connection interface, etc.

2. PortalDI API - allows calls to webnative, using PortalDI (more info can be found here)
3. Smarty template engine API - Smarty is a powerful template engine for PHP, that is used to

enhance plugin templates (more info can be found here)
4. JavaScript (jQuery) 3.+ - can be used to add dynamic functionality to the plugin UI (more

info can be found here)
5. Bootstrap 4.+ – the world’s most popular framework for building responsive, mobile-first

sites (more info can be found here)

You need some knowledge of PHP, JavaScript and CSS to start creating EZX Plugins. Download
sample plugins PreviewPlugin (standard EZX plugin) and xCsvMapPlugin to use as a reference.

http://manuals.napc.com/elegant6/WebNative%20Portal%20Data%20Interchange%20API%204.5.pdf
http://www.smarty.net/
https://jquery.com/
https://jquery.com/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
http://buildbot.napc.com/plugins/PreviewPlugin.zip
http://buildbot.napc.com/plugins/xCsvMapPlugin.zip

Installation

1. Create or obtain a plugin package
2. Login to your EZX admin interface
3. Go to the Plugins page:

4. Click Actions → Install Plugin and choose a plugin package file you want to install
5. Make sure the plugin is successfully added to the Plugins list:

Locating Plugin Installation Folder

The plugins will be installed into the following folder - /<ezx install path>/api/lib/plugins.

Basic Plugin Structure

Let’s continue with our sample plugin PreviewPlugin. If you look inside its root folder (/<ezx install
path>/api/lib/plugins/PreviewPlugin), you’ll see the following structure:

• config.json → contains plugin configuration
• form.json → contains plugin form configuration (optional)
• PreviewPlugin.php → main plugin php file
• CSS → contains plugin .css files (optional)
• JS → contains plugin .js files (optional)
• Templates → contains plugin Smarty template files (optional)

NOTE: plugin folder name has to end with “Plugin”: PreviewPlugin, DemoPlugin, MyTestPlugin, etc

NOTE: the main plugin php file should ALWAYS be named the same as the plugin folder, excluding
starting optional lowercase “x” like in xCsvMapPlugin

NOTE: you may add other folders/files into the plugin folder as required

Creating Plugin Package

Simply zip the plugin folder and if all the requirements (see above) are met – you’ll get an
installable EZX plugin

config.json

This file determines how the plugin will be attached to EZX interface.

Available config.json options:

title Plugin title. Can be any value, name it something intuitive

version Plugin version. Helps users to understand which plugin version they currently
have

type Currently the only available value is “inline”. You can skip this parameter. In
this case plugin will stay “invisible”. You with “inline_js” to allow custom JS
code execution inside EZX UI

description Custom plugin description. May include any info you find necessary

actions An array of EZX pages the plugin will be attached to. Possible values:

“generic”, “home”, “browse”, “basket”, “basket-plugin” “view”

NOTE: set options applyToFiles and/or applyToFolders to true if you want to
use action “view”

NOTE: the plugin will be added to the main menu of the selected pages
(excluding “login” page):

NOTE: use “basket-plugin” action to attach your plugin to the list of
Webnative basket plugins:

supportsEmptyBasket

Set to true to ensure that the plugin button remains active even if the basket
is empty

NOTE: action “basket-plugin” is required for this option to work

applyToFolders If set to true, the plugin button will be automatically added to every folder

menu

NOTE: action “view” is required for this option to work

applyToFiles If set to true, the plugin button will be automatically added to every file

menu:

NOTE: action “view” is required for this option to work

enabledAssetsOnly

If set to true, the plugin button will be added to enabled (unexpired) assets

only

NOTE: action “view” is required for this option to work

onlineAssetsOnly

If set to true, the plugin button will be added to online (not archived) assets

only

NOTE: action “view” is required for this option to work

isNewWindow

Set to true, to open the plugin in a new browser tab, rather than popup

window

width “<num>px” or “<num>%” – can be used to set plugin popup window width

NOTE: set isNewWindow to false to utilize this option

height “<num>px” or “<num>%” – can be used to set plugin popup window height

NOTE: set isNewWindow to false to utilize this option

maximizable

Set to true to allow maximizing of the plugin popup window

NOTE: set isNewWindow to false to utilize this option

maximized Set to true to make plugin popup window maximized by default

NOTE: set isNewWindow to false to utilize this option

css An array of relative paths to .css files that will be attached to the plugin page

js An array of relative paths to .js files that will be attached to the plugin page

inline_js

Relative path to. js file that will be attached to EZX pages to which the plugin

is linked through actions option. Can be used to modify EZX page UI.

template Relative path to the main plugin Smarty template file

dynamicConfig Set to true to override config.json inside a main plugin php file (see Main
Plugin PHP File below for more info)

map Allows to create a set of sub-plugins with different configurations based on a

single plugin:

Map example:
{
 "home": [
 {
 "title": "Map Sample",
 "url": "http://google.com"
 }
],
 "view": [
 {
 "title": "New Window",
 "isNewWindow": true
 },
 {
 "title": "Popup",
 "isNewWindow": false,
 "maximized": true
 }
]
}

NOTE: map property names should match chosen action names

NOTE: map supports the following actions: “home”, “browse”, “basket”,
“view”

NOTE: each property value is an array of plugin configurations

url Set this option to override internal EZX plugin url.

NOTE: this is useful if you want the plugin to redirect to an external web page

NOTE: depending on the current page (“home”, “browse”, “basket”, “view”)
EZX can pass additional parameters to provided url. To add parameters to the
url, format it as follows:
http://external.page.com?param={<ezx_param1>}¶m2={<ezx_param2>}.

http://external.page.com/?param=%7b%3cezx_param1%3e%7d¶m2=%7b%3cezx_param2%3e%7d

You can execute the plugin without url property to see which parameters are
available

form.json

This file contains a json array of form-control objects. Each form control object will be shown as an
input element in the plugin configuration form (in the site settings):

NOTE: each EZX site will have its own plugin configuration

Available form control parameters:

type “text”, “textarea”, “password”, “checkbox”, “select”, “radio”, “datetime”

label Arbitrary label that will be associated with the given form control

value Default value

separator Set true to add “<hr>” separator above the form control

hint Arbitrary hint that will be shown as a tooltip for “?” icon:

maxlength Maximum number of characters for a text input field (default is 255)

rows Number of rows for a textarea (default is 5)

readonly Set to true to show control as readonly

options An object that contains options for “select” control element.

Example: {"opt1": "option1", "opt2": "option2"}

hasEmptyValue Set to true if you want “select” control element to have initial empty value

validators An object that contains form control value validators.

Below you can find the list of all validators with available parameters:

{

 "required":true,

 "emails":true,

 "email":true,

 "length": {

 "length":<number>,

 "min":<boolean>(default - false),

 "isMultiline":<boolean>(default - false)

 },

 "max": {

 "maxValue":<number>,

 "compareToControl":<string>(another control element name to compare the value
against)

 },

 "min": {

 "minValue": <number>,

 "compareToControl":<string>(another control element name to compare the value
against)

 }

}

Special control elements

You can add the following optional control elements to form.json:

is_active {"value": true}

Allows to enable/disable the plugin

NOTE: is_active element may be omitted. In this
case it will be added automatically and set to false

is_new_window
{
 "type": "checkbox",
 "value": false,
 "label": "Open in new window"
}

Allows to control how plugin is displayed – in a
separate browser tab or popup.

NOTE: overrides config.json isNewWindow option

Main Plugin PHP File

• Main plugin file has to have the same name as plugin folder,
• Plugin class, described inside this file has to have the same name as plugin file
• Plugin class, described inside this file has to extend AbstractTemplatePlugin (for a plugin

with UI) or AbstractPlugin (for a plugin without UI) EZX API classes

NOTE: EZX API was developed to support PHP version 5.2 or higher

Methods, available for AbstractPlugin descendants:

name getCredentials

description Can be used to get basic information about current
session

parameters -

returns Credentials object that contains the following
data:

• username,

• password,

• siteId,

• type,

• wnHost,

• wnUserId,

• wnUserGroups

• cbUsername

name getParameters

description Can be used to obtain $_GET and $_POST
parameters, passed to the plugin

parameters -

returns Parameters object that contains the following
data:

• get,

• post,

• config

name getUrl

description Can be used to get plugin url with additional
parameters attached

parameters • parameters (array) – array of parameters
that will be attached to the url

returns string – generated plugin url

name getSetting

description Can be used to obtain a plugin setting for the
current site

parameters • setting (string) – setting name as
configured in form.json file

returns mixed|null – setting value or null if setting was not
found

name getSiteSetting

description Can be used to obtain a setting for the current site

parameters • setting (string) – setting name

returns mixed|null – setting value or null if setting was not
found

name getSiteSettings

description Can be used to obtain all settings for the current
site

parameters -

returns array containing all current site settings

name getDataFromServer

description Can be used to perform a portalDI call and obtain
data from Webnative server as an array

parameters • actionName (string) – a list of all available
portalDI actions can be found here

• getParams (array) – a list of params that
will be passed into PortalDI as $_GET

• postParams (array) – a list of params that
will be passed to portalDI as $_POST

returns array|false – array containing response data or
false on error

name getRawDataFromServer

description Can be used to perform a portalDI call and obtain
data from Webnative server in a “raw” state.
Useful to get thumbnails, previews or download
files

parameters • actionName (string) – a list of all available
portalDI actions can be found here

• getParams (array) – a list of params that
will be passed into PortalDI as $_GET

• postParams (array) – a list of params that
will be passed to portalDI as $_POST

returns string containing response data

http://manuals.napc.com/elegant6/WebNative%20Portal%20Data%20Interchange%20API%204.5.pdf
http://manuals.napc.com/elegant6/WebNative%20Portal%20Data%20Interchange%20API%204.5.pdf

Static functions, that can be implemented in AbstractPlugin descendants

These static functions can be used to dynamically override plugin configuration or execute

additional business logic:

name getDynamicConfig

description Implement it to override some/all settings in
config.json file and/or add more arbitrary
parameters to it.

This config object can be reached from outside (for
example from inline_js file) with the following path:
document.exposed.sitePlugins[‘<PLUGIN_NAME>’]

parameters • credentials (Credentials) – credentials
object

• settings (array) – plugin configuration for
the current site

returns array – array that will be later merged with the
settings from config.json file

name onInstall

description Function may contain additional business logic,
executed on plugin install. For example, it can be
used to install some third-party libraries, make
configurations based on server environment, etc.

parameters -

returns void

name beforeSave

description Function may contain additional business logic (for
example validation), executed before site save

parameters • siteId (integer) – current site id

• settings (array) – plugin configuration for
the current site

returns void

name onSave

description Function may contain additional business logic,
executed on site save

parameters • siteId (integer) – current site id

• settings (array) – plugin configuration for
the current site

returns void

name overrideForm

description Function can override plugin form before it is
displayed in the site configuration UI

parameters • form (array) – plugin form configuration

returns array – array that can be used as form.json
substitution

Constants that can be set in AbstractPlugin descendants:

name ACCESS_VERIFICATION_NEEDED

type boolean (default - true)

description Set to false to allow plugin execution by
anonymous (not logged in) users

Methods, available for AbstractTemplatePlugin descendants:

name getTemplateVariables

description This method returns an array of data which then
can be used in the template file(s)

parameters -

returns array

name getJavascriptVariables

description This method returns an array of data that is turned
into javascript variables by the template engine.
You can then use these variables in the plugin
javascript code

parameters -

returns array

name onDisplay

description All plugin business logic can reside in this method,
which is called before plugin display

parameters -

returns array

Templates

The folder may contain .html files with Smarty templates. While only one template can be the
default one (set up in config.json) there may be more .html files linked to each other using Smarty
API.

https://www.smarty.net/
https://www.smarty.net/

Exceptions Handling

If you need to throw an exception, you can utilize EZX API exception call –

throw new ApiException($message, $code);

This exception will be registered in the EZX error log (/<ezx install path>/logs/error.log) and

properly displayed in the plugin UI:

Logging

If you need to log some data, you can use EZX built-in global logging function

name execLogHandler

description Logs arbitrary data into a file in “/<ezx install
path>/logs” directory

parameters • data (array) – arbitrary data you want to
log

• logfile (string) – arbitrary log file name

• enabled (boolean) – set to true to log data.
Omit this parameter to log data only if the
application is in debug mode (application
url contains debug=1 parameter)

returns void

Sample Plugins

PreviewPlugin

Simple demo plugin that allows to open large image previews in popup or separate windows. The
plugin is a standard part of EZX. The plugin extends AbstractTemplatePlugin class and has its own
template and UI.

CsvMapPlugin

Allows to download a CSV file containing file and keyword names. The plugin extends
AbstractPlugin and does not have a UI. Instead, it’s JS is integrated into the browse EZX page.
The plugin uses document.exposed JS object that contains data populated by EZX to be used in
third party JS scripts

http://buildbot.napc.com/plugins/PreviewPlugin.zip
http://buildbot.napc.com/plugins/xCsvMapPlugin.zip

